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 An Acute Kidney Injury Prediction Model  
for 24-hour Ultramarathon Runners 

by 
Po-Ya Hsu1, Yi-Chung Hsu2, Hsin-Li Liu3, Wei Fong Kao4, Kuan-Yu Lin3 

Acute kidney injury (AKI) is frequently seen in ultrarunners, and in this study, an AKI prediction 
model for 24-hour ultrarunners was built based on the runner’s prerace blood, urine, and body composition 
data. Twenty-two ultrarunners participated in the study. The risk of acquiring AKI was evaluated by a support 
vector machine (SVM) model, which is a statistical model commonly used for classification tasks. The inputs 
of the SVM model were the data collected 1 hour before the race, and the output of the SVM model was the 
decision of acquiring AKI. Our best AKI prediction model achieved accuracy of 96% in training and 90% in 
cross-validation tests. In addition, the sensitivity and specificity of the model were 90% and 100%, 
respectively. In accordance with the AKI prediction model components, ultra-runners are suggested to have 
high muscle mass and undergo regular ultra-endurance sports training to reduce the risk of acquiring AKI 
after participating in a 24-hour ultramarathon. 
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Introduction 

An ultramarathon is a footrace that spans 
a distance greater than 42.195 km. The participants 
of ultramarathons, called ultrarunners, are 
susceptible to dehydration, exhaustion, heat 
illness, muscle cramps, and rhabdomyolysis 
(Cheuvront and Haymes, 2001). Severe 
dehydration can lead to the sudden failure of renal 
function, which is more well-known as acute 
kidney injury (AKI) (Powers, 1970). 

AKI is frequently observed among 
ultrarunners, with an incidence rate ranging from 
30 to 80% (Lipman et al., 2014). A considerable 
number of ultrarunners may require 
hospitalization due to AKI after a race (Bruso et al., 
2010; Seedat et al., 1989). The most common 
etiology of AKI in ultrarunners is rhabdomyolysis, 
which is caused by muscle breakdown arising from 
excessively continuous exertion (Hoffman and 

Weiss, 2016). In light of the severity and the 
incidence rate of AKI among ultrarunners, an AKI 
prediction model for ultra-runners during the 
prerace stage is highly necessary. 

Artificial intelligent models have been 
recently applied in the field of medicine, such as in 
biomarker identification, physiological status 
estimation, and medical diagnosis (Chang et al., 
2019; Kononenko, 2001). Among various machine 
learning (ML) approaches, the support vector 
machine (SVM) is a widely known algorithm that 
is capable of addressing classification challenges 
associated with multivariate data (Cortes and 
Vapnik, 1995). In the present study, ultrarunners’ 
body composition, urine, and blood data were 
utilized together with the SVM method to devise 
an AKI risk evaluation model. Such strategy has 
been shown in the Hsu et al.’s (2020) study to  
successfully predict the AKI incidence in 48-hour 
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ultrarunners. An AKI model of 90% accuracy and 
sensitivity was hypothesized to be possibly 
constructed.  

This study aimed to build an AKI prediction 
model for ultrarunners during the prerace stage. 
We hypothesized that such a model could achieve 
at least 90% accuracy in AKI prediction. Volunteers 
who participated a 24-hour Ultramarathon Festival 
were recruited and their blood, urine, and body 
composition data were collected during prerace 
and postrace stages. SVM models were devised to 
compute the risk of acquiring AKI based on the 
prerace data of ultrarunners, and statistical 
analysis was performed to observe the 
physiological changes in ultrarunners. The 
proposed AKI prediction model may provide 
substantial AKI risk evaluation to ultrarunners 
before the start of a 24-hour ultramarathon. 
Methods 
Participants 

This study was approved by the Joint 
Institutional Review Board (201309022), and all the 
recruited ultrarunners provided written consent 
forms to participate in the study. A total of 22 
ultrarunners meeting the inclusion criteria (21 
males and one female) volunteered to join the 
study. All the volunteers were ultrarunners 
competing in the ultramarathon held at the 2015 
24-hour Ultramarathon Festival. The study’s 
exclusion criteria were as follows: (1) history of 
syncope of unknown origin; (2) chest pain of 
unknown origin; (3) difficulty breathing of 
unknown origin; (4) history of heart disease 
(including congenital heart disease, coronary heart 
disease, and heart failure); (5) any musculoskeletal 
injury that may affect physical performance; (6) 
history of renal dysfunction; (7) history of seizure; 
(8) reluctance to provide biochemical samples; and 
(9) unwillingness to follow the study procedures. 
Measures 

Blood samples and body composition of 
each of the 22 participants were measured 1 h 
before and after the race. Body composition data 
were measured using Bioscan920II, and blood 
samples were collected using sterile techniques. 
Blood (20 mL) was drawn from the antecubital vein 
from each study participant 1 h before and  
immediately after the race. All specimens were 
refrigerated and transported to the laboratory 
within 4 h of sampling. Plasma samples were 
assayed on the Siemens Dimension RXL Max 
Integrated Chemistry System using reagents 
supplied by the manufacturer. Analysis was 

performed on the day of the race using the same 
calibration. Troponin I was analyzed using a high-
sensitivity cTnI assay (Siemens Healthcare 
Diagnostics, Germany). Creatine kinase (CK), CK-
muscle/brain MB (CK-MB) isoenzyme, 
electrolytes, renal function indices, lipid 
metabolism indices, and myoglobin (MYO) were 
analyzed using the Siemens Dimension RxL Max 
Integrated Chemistry System (Siemens Dimension 
RxL, Germany), with reagents supplied by the 
manufacturer. Urine was also collected to analyze 
BUN, creatinine, MYO (Miditron M, ROCHE), and 
electrolytes (Medica Corporation, EasyLyte®). 
Design and Procedures 

All ultrarunners began the race at 3:00 P.M. 
on February 13, 2015, and ended at 3:00 P.M. on 
February 14, 2015. During the race, ultrarunners 
consistently ran around the 668 m path. They were 
permitted to rest, consume water, and take in food 
freely during the race. All the ultrarunners were 
required to complete an application form for 
demographic data and information on the medical 
and training history at the pre-race stage. Prerace 
height and body mass were measured by study 
personnel. Blood samples and body composition of 
each of the 22 participants were measured 1 h 
before and after the race, respectively.  

The definition of AKI in this study was 
based on the serum creatinine levels obtained from 
the Acute Kidney Injury Network criteria (Mehta 
et al., 2007). According to the criteria (Mehta et al., 
2007), AKI has three stages. For stage 1 AKI, the 
postrace plasma creatinine levels of ultrarunners 
are 1.5–2 times the prerace levels or they exhibit an 
increase of 0.3 mg/dL compared with the prerace 
levels. For stage 2 AKI, the postrace plasma 
creatinine levels of ultrarunners are 2–3 times the 
prerace levels. The ultrarunners are classified 
under stage 3 AKI if their postrace plasma 
creatinine levels are more than three times their 
prerace levels, with an acute increase larger than or 
equal to 0.5 mg/dL. 
Statistical Analyses 

The Friedman test was selected to  
determine changes in blood, urine, and body 
composition data from prerace to postrace because 
of the sample size (Hsu et al., 2020; Kao et al., 2015). 

The blood data included in this study 
consisted of blood urea nitrogen (BUN, mmol/L), 
creatinine (mg/dL), sodium (Na, mmol/L), 
potassium (K, mmol/L), glomerular filtration rate 
(GFR, mL/min), high-density lipoproteins (HDLs, 
mg/dL), triglyceride (TG, mg/dL), low-density 
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lipoproteins (LDLs, mg/dL), cholesterol (CHOL, 
mg/dL), CK (U/L), CK-MB (U/L), MYO (ng/dL), 
and troponin (TROP T, μg/L).  

Urine data comprised five indices: BUN 
(mmol/L), creatinine (mg/dL), Na (mmol/L), K 
(mmol/L), and MYO (ng/dL).  

Body composition data included the 
measurements obtained using Bioscan920II. A 
total of 29 items were included in the body 
composition category: the basal metabolic rate 
(BMR) (kcal), fat-free mass (FFMKG, kg), the fat-
free mass ratio (FFM, %), fat (FATKG, kg), the fat 
ratio (FAT, %), total body water volume (TBW, L), 
the total body water volume ratio (TBW100, %), 
extracellular water volume (ECW, L), the 
extracellular water volume ratio (ECW100) (%), 
intracellular water volume (ICW) (L), the 
intracellular water volume ratio (ICW100, %), the 
ECW to ICW ratio (ECWICW), body cell mass 
(BCM, kg), extracellular mass (ECM, kg), creatinine 
clearance (CCR, mL/min), GFR (mL/min), protein 
mass (kg), mineral mass (kg), muscle mass (kg), 
total body K (TBK, g), total body calcium mass 
(TBCa, g), glycogen mass (g), dry weight (kg), 
extracellular solids (ECS, L), extracellular fluid 
(ECF, L), plasma fluid (PF, L), interstitial fluid extra 
vascular (InterstF, L), body volume (L), and body 
density mass (kg).  
AKI Risk Evaluation Model Construction 

In this study, four AKI prediction models 
were proposed to achieve AKI risk evaluation 
during the prerace stage. Three of the four models 
were built on the basis of blood, urine, and body 
composition data separately. The last model was 
constructed based on the combination of all three 
collected datasets. All four models were built using 
the SVM algorithm developed by Hsu et al. (2020), 
with modifications in the input and output of the 
algorithm. Moreover, a similar recursive SVM 
algorithm has been applied by Zhang et al. (2006) 
in bioinformatics. Every computational task  
was run on MATLAB 2019a. 

The SVM model (Figure 1) treated the 
prerace data and the AKI indicator of ultrarunners 
as input and generated the best AKI risk evaluation 
model as output. With the exclusion of the AKI 
indicator, the input of the SVM model was the 
normalized prerace blood, urine, and body 
composition data of ultrarunners. The 
normalization utilized in this study transformed 
the data into zero means and unit variances 
[standard deviation (STD) = 1] by reducing the 
mean and scaling the data with the calculated STD. 

Meanwhile, the AKI indicator was a binary vector 
composed of zeroes and ones. 

After the data were normalized, the linear 
kernel SVM model was ran on the 11-fold cross-
validation test at each iteration to determine the 
contributing factors of AKI prediction. For each 
cross-validation test, an SVM model with 20 
samples was built, and the two left-out samples 
were used to determine the performance of the 
built SVM model. The 11-fold cross-validation test 
was chosen based on the rule of leaving 10% data 
out for validation in the dataset with a relatively 
small sample size. In each iteration, the weight of 
each feature, accuracy, sensitivity, and specificity 
of AKI prediction were recorded. Each feature was 
one normalized input component (e.g., normalized 
creatinine from the blood sample), and the weight 
of each feature corresponded to the quantified 
contribution of that feature to evaluating the risk of 
acquiring AKI. Accuracy, sensitivity, and 
specificity were defined using formulas applied in 
the Hsu et al.’s (2020) study as follows:  𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑌෠𝑌 × 100% 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑌෠஺௄ூ𝑌஺௄ூ × 100% 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑌෠௡௢஺௄ூ𝑌௡௢஺௄ூ × 100% 

where Y is the label of the data, and Ŷ is the 
predicted label of the model. The subscripts in AKI 
were the data subset of those acquiring AKI, while 
“noAKI” concerned the subset of subjects without 
AKI. Once the execution of the 11-fold cross-
validation was completed in one iteration, the SVM 
model verified whether the number of features was 
equal to one. Subsequently, when it was true, the 
best AKI risk evaluation model was returned, 
which was equivalent to the model with the 
highest averaged accuracy (averaged across  
the results of the cross-validation tests). Otherwise, 
the SVM model removed the feature with the 
minimum averaged absolute weight (least 
contribution to AKI prediction), and the data with 
the removed feature entered the next iteration. 
Quantification of AKI Risk Evaluation Models’ 
Performance 

Performance of the four proposed models 
was quantified to determine the best 24-hour 
ultramarathon AKI prediction model. The average 
accuracy, sensitivity, and specificity of each best 
model (the output of the SVM model) were 
selected as performance quantification metrics. In 
addition, the overall accuracy, sensitivity, and 
specificity of the entire dataset were computed, 



106  An acute kidney injury prediction model for 24-hour ultramarathon runners 

Journal of Human Kinetics - volume 84/2022 http://www.johk.pl 

and an 11-fold cross-validation test was performed 
with the best AKI prediction model, considering 
that the evaluation conducted on the entire dataset 
exhibited the goodness of the model, and the 
results of the cross-validation test could represent 
the model’s reliability. 
Results 
Demographics and AKI Outcomes 

The demographics and AKI outcomes of the 
recruited participants are shown in Table 1. In this 
study, 22 subjects, with 21 men and one woman, 
were recruited. The average age of the recruited 
ultrarunners was 44 years, with the age spanning 
from 28 to 67 years. Ten out of 22 participants (45%) 
were diagnosed with stage 1 AKI immediately 
after the race, while the remaining 12 participants 
had no AKI diagnosis. None of the ultrarunners 
were classified as stages 2 and 3 AKI. 
Analyses of Biochemical Data 

Tables 2–4 present the Friedman test results 
of the ultrarunners’ blood, urine, and body 
composition data between 1 hour before and after 
the race. Blood levels of BUN, creatinine, CK, 
CKMB, TROP T, MYO, and HDL were significantly 
increased after the race. On the contrary, blood 
levels of GFR, TG, LDL, and CHOL were 
significantly decreased. Urine BUN, creatinine, K, 
and MYO levels were significantly increased. As 
for body mass data, the levels of muscle, dry 
weight, and body density were found to be 
significantly reduced. 
Outcomes of SVM Models 

The selected features of each SVM model are 
provided in Table 5, and all the features are listed  
in the decreasing order of contribution in AKI 
prediction. Creatinine, TG, and GFR were the 
components of the blood AKI prerace risk 
evaluation model. Creatinine and BUN were the 
selected features in the urine AKI prerace risk 
evaluation model. BCM, ECM, and BMR were 
selected from the body composition data to 
evaluate the risk of acquiring AKI during the 
prerace stage. In the decreasing order of 
contribution, creatinine from the blood data, 
InterstF, ECW, TG, and BUN from the blood data; 
ECM, BMR, and K from the urine data; PF and K 
from the blood data; and creatinine from the urine 
data were used to determine the risk of AKI during 
the prerace stage. In the mixed model, features 
from the blood, urine, and body mass data were 
selected. 

In addition to the ranking of each feature’s 
contribution, Table 5 presents the relationship 

between the level of the feature and its risk of 
exposure to AKI. In the blood AKI prediction 
model, the higher the levels of creatinine and GFR 
were, the lower the risk of 24-hour ultrarunners 
acquiring AKI. Moreover, the higher the TG levels 
were, the higher the risk of exposure to AKI. In the 
urine AKI prediction model, 24-hour ultrarunners 
with high creatinine and low BUN levels tended to 
acquire AKI. Low BCM, low BMR, and high ECM 
levels increased the risk of 24-hour ultrarunners to 
acquire AKI in the body composition model. In the 
mixed model, ultrarunners were prone to acquire 
AKI if they had high levels of creatine, TG, BMR, 
PF, and K in the blood and low levels of InterstF, 
ECF, and BUN in the blood; ECM and K in the 
urine; and urine creatinine. 
AKI Risk Evaluation Models during Prerace Stage  

Table 6 exhibits the training and cross-
validation results of the four proposed AKI risk 
evaluation models. On average, the mixed model 
exhibited the best performance. Training accuracy, 
sensitivity, and specificity of the mixed model were 
96%, 90%, and 100%, respectively. Moreover, the 
mixed model’s cross-validation accuracy, 
sensitivity, and specificity were 90%, 83%, and 
95%, respectively. Referring to the performance of 
the blood, urine, and body mass models, their 
training accuracy, sensitivity, and specificity were 
within the ranges of 55−80%, 10−60%, and 
92−100%, respectively, and their  
cross-validation accuracy, sensitivity, and  
specificity were within the ranges of 45−70%, 
0−60%, and 75−96%, respectively. 
Discussion 
First ML-based AKI Risk Evaluation Model of 24-
hour Ultramarathon Runners during the Prerace 
Stage 

This study, to the best of the authors’ 
knowledge, was the first to predict acquiring AKI 
among 24-hour ultrarunners before the start of the 
race. The best model reached 96% accuracy in 
training and 90% in cross-validation tests. 
Furthermore, 90% sensitivity and 100% specificity 
were achieved. The best model comprised a 
mixture of blood, urine, and body composition 
data from 24-hour ultrarunners. The proposed 
model could prevent ultrarunners from acquiring 
AKI at the prerace stage of a 24-hour 
ultramarathon. 

The features of the best AKI risk evaluation 
model were creatinine, BUN, TG, and K from the 
blood data; K and creatinine from the urine data;  
and InterstF, ECF, ECM, BMR, and PF from the 
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body composition data. In addition, these 11 
components indicated that certain levels of 
biochemicals, lipoproteins, and ions, together with 
additional body composition information, could 
infer the chance of an ultrarunner being exposed to 
AKI in a 24-hour ultramarathon. 

A closer look at the features of the best 
model revealed three main indicators included in 
the AKI risk evaluation model for 24-hour 
ultramarathon runners: creatinine levels from 
blood and urine, the basic metabolic rate, and 
balance of body fluid and electrolytes. A significant 
correlation between muscle mass and creatinine 
has been reported by Baxmann et al. (2008). An 

Elevated BMR has been observed in individuals 
undergoing long-term physical activity (Speakman 
and Selman, 2003). According to Rehrer’s (2001) 
research, balance of body fluid  
and electrolytes could influence performance of 
athletes in ultra-endurance sports. On the basis of 
the aforementioned publications, the outcomes of 
the AKI risk evaluation model are reasonable. 
Furthermore, ultrarunners participating in 24-hour 
ultramarathons are suggested to build up muscle 
mass and train themselves in ultra-endurance 
sports. 

 
 

 

 
Figure 1. Flowchart of the construction of the AKI risk evaluation model. 

 
 
 

Table 1. Demographics and Acute Kidney Injury Outcomes in 24-Hour Ultramarathon Runners  
(n = 22). 

Variables Outcome 

Age 44 (22-58) years 

Gender 21 males, 1 female 

Body Height 171 ± 4.08 cm 

Body Mass 67.9 ± 10.5 kg 

Body Mass Index 23.1 ± 3.10 kg/m2 

AKI Stage 0 12 (55%) 

AKI Stage 1 10 (45%) 
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Table 2. Biochemical Data of Blood at Prerace and Immediately After the Race  
in 24-Hour Ultramarathon Runners (n = 22) [* denotes p < 0.05]. 

Component Pre-race 
Average (Range) 

Immediately After Race 
Average (Range) 

p 
Friedman Test 

BUN (mmol/L) 14.6 (10–23) 25.5 (13–41) <<0.001* 

Creatinine (mg/dL) 0.77 (0.6–1.0) 1.02 (0.8–1.3) <<0.001* 

GFR (mL/min) 123.8 (92–188) 86.7 (60–130) <<0.001* 

Na (mmol/L) 140.3 (137–144) 140.7 (134–150) 0.49 

K (mmol/L) 4.28 (3.7–4.9) 4.38 (3.8–5) 0.49 

CK (U/L) 164 (72–397) 5697 (701–14391) <<0.001* 

CKMB (U/L) 22.5 (12.7–39.3) 195 (32.1–605) <<0.001* 

TROP T (ug/L) 0.0048 (0.0030–0.0170) 0.011 (0.0030–0.030) <<0.001* 

MYO (ng/dL) 26.3 (10.6–57.4) 1479 (91.1–4874) <<0.001* 

HDL (mg/dL) 66.6 (46–91) 76.3 (56–102) <0.001* 

TG (mg/dL) 129 (44–390) 58.6 (28–114) <<0.001* 

LDL (mg/dL) 123 (64 – 171) 92.7 (10–151) <<0.001* 

CHOL (mg/dL) 223 (165–321) 191 (139–255) <0.001* 

 
 
 
 
 

 Table 3.Biochemical Data of Urine at Prerace and Immediately after the Race  
in 24-Hour Ultramarathon Runners (n = 22) [* denotes p < 0.05]. 

Component Pre-race 
Average (Range) 

Immediately After Race 
Average (Range) 

p 
Friedman Test 

BUN (mmol/L) 626 (152–1831) 1510 (496–2065) <0.001* 

Creatinine (mg/dL) 84.5 (18.3–228) 192 (37–297) <0.001* 

Na (mmol/L) 112 (34–260) 65.8 (15–140) 0.01* 

K (mmol/L) 38.5 (9.6–90) 78.9 (26.4–124.5) <0.001 

MYO (ng/dL) 1.05 (1–2.2) 147 (1–1600) 0.002 
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Table 4. Biochemical Data of Blood at Prerace and Immediately 
after the Race in 24-Hour Ultramarathon Runners (n = 22) [* denotes p < 0.05]. 

Component Pre-race 
Average (Range) 

Immediately After Race 
Average (Range) 

p 
Friedman Test 

BMR (kcal) 1739 (1475–2014) 1725 (1470–2132) 0.67 

FFMKG (kg) 55.8 (45.0–67.4) 55.1 (44.7–69) 0.67 

FFM (%) 82.8 (62.0–95.1) 83.4 (66.4–92.9) 0.39 

FATKG (kg) 12.2 (3.11–38.8) 11.5 (3.60–33.9) 0.28 

FAT (%) 17.2 (4.94–38.0) 16.6 (7.14–33.6) 0.39 

TBW (L) 43.1 (31.8–66.6) 40.4 (28.7–57.9) 0.39 

TBW100 (%) 63.9 (47.4–90.0) 61.2 (46.2–80.1) 1 

ECW (L) 18.3 (14.9–30.1) 17.9 (15.2–24.1) 1 

ECW100 (%) 42.9 (35.8–48.4) 44.5 (41.6–62.6) 0.09 

ICW (L) 24.7 (16.4–36.9) 24.7 (16.4–36.9) 0.20 

ICW100 (%) 57.1 (51.6–64.2) 55.4 (37.4–58.4) 0.09 

ECWICW 0.75 (0.56–0.94) 0.82 (0.71–1.68) 0.09 

BCM (kg) 30.8 (22.9–38.9) 29.3 (21.4–37.5) 0.09 

ECM (kg) 25.0 (21.8–28.9) 25.8 (21.7–32.9) 0.83 

CCR (mL/min) 318 (4.80–978) 486 (0.3–995) 0.39 

GFR (mL/min) 83.2 (43.2–108) 78.7 (42.6–104) 0.09 

PROTEIN (kg) 9.40 (0.56–14.1) 10.8 (4.81–19.0) 0.67 

MINERAL (kg) 3.32 (0.20–4.93) 3.82 (1.69–6.66) 0.67 

MUSCLE (kg) 27.2 (19.4–32.6) 26.8 (19.2–34.4) 0.02* 

TBK (g) 147 (102–186) 140 (100–179) 0.09 

TBCa (g) 1185 (857–1467) 1135 (848–1420) 0.09 

GLYCOGEN (g) 507 (409–612) 500 (405–627) 0.67 

DRY WEIGHT (kg) 66.3 (49.3–99.8) 64.5 (48.3–98.5) <0.001* 

ECS (L) 6.01 (4.35–7.45) 5.76 (4.31–7.20) 0.09 

ECF (L) 19.4 (15.8–31.9) 19.0 (16.1–25.5) 1 

PF (L) 3.88 (3.15–6.38) 3.79 (3.22–5.10) 1 

InterstF (L) 13.6 (11.0–22.3) 13.3 (11.3–17.9) 1 

Body Volume (L) 64.2 (47.8–100.6) 62.8 (46.5–98.6) <0.001* 

Body Density (kg) 1.06 (1.01–1.09) 1.06 (1.02–1.08) 0.39 
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Table 5. Features and their weights of the Four Proposed AKI Pre-race Risk Evaluation Models. 
Model Features
Blood CREA+, TG-, GFR- 
Urine CREA+, BUN- 
Bodymass BCM-, ECW+, BMR- 
Mixed blood Creatinine+, InterstF-, ECF-, TG+, blood BUN-, ECM-, BMR+, 

urine K-, Plasma F+, blood K+, urine Creatinine- 

Features are listed in decreasing order of the contribution of AKI risk evaluation. 
+ / -: the larger the feature, the lower / higher the risk of getting AKI 

 
Table 6. Training and Cross Validation Results of the Four AKI Pre-race Risk Evaluation Models. 

Model Training Cross Validation 

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity 

Blood 73% 50% 92% 70% 45% 90% 

Urine 77% 60% 92% 70% 56% 76% 

Bodymass 59% 10% 100% 47% 0% 96% 

Mixed 96% 90% 100% 90% 83% 95% 

 
 

By contrast, models which utilized a single 
type of data exhibited varying performance and 
did not surpass that of the mixed model. Among 
blood, urine, and body composition, the urine 
model generally achieved the best performance. 
Biochemical and Physiological Changes 

Statistical findings of biochemical and 
physiological changes were compared with those 
of other related studies in traditional marathons 
and ultramarathons. The current study provided 
consistent responses as other related research 
works. The similar findings include the decrease in 
fat content, elevated glycogen, the breakdown of 
muscle (measured from BioScan920), and variation 
in ions in urine and blood (Kao et al., 2015; Wu et 
al., 2004). The consistency of the obtained results 
further strengthened the validity of the data 
collected in the present study. 
Conclusions 
   In summary, we acknowledge that there 
are some limitations to our study. The relatively 
small sample size and the observational design 
limit the overall strength of the conclusions. Due  
to the limited number of participants available in 
this study, a more detailed biochemical analysis 
with a much larger number of samples would be 
required to elucidate the molecular mechanisms 

involved. On the other hand, ultra-marathons are 
rather exclusive events with far fewer participants 
compared to regular marathon races, and we 
believe that our study, despite a small sample size, 
is of importance. In our study, an AKI prediction 
model achieving 96% accuracy was constructed, 
which supports the stated hypothesis of building 
an AKI prediction model accomplishing at least 
90% accuracy. A promising model for evaluating 
the risk of acquiring AKI among 24-hour 
ultramarathon runners at the prerace stage was 
demonstrated. Such an AKI prediction model 
considered blood, urine, and body composition 
data as input and output in AKI prediction, and it 
successfully achieved accuracy of 96%. 
Considering the components of the proposed 
model, ultrarunners with relatively high muscle 
mass and low-fat mass have a lower risk of 
acquiring AKI (Hsu et al., 2020). Therefore, 
ultrarunners are suggested to have high a high % 
of FFM, but a low body mass, and regular ultra-
endurance sports training. Furthermore, the model 
could potentially extend translational applications 
to other extreme sports for injury prevention and 
risk evaluation for diagnosis. 
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